Rat Vascular Smooth Muscle and Endothelial Cells
نویسنده
چکیده
The dominant mechanism responsible for restenosis after angioplasty is believed to be the activation of medial smooth muscle cells (SMCs), leading to their proliferation, migration to the subintima, and further proliferation. To develop novel strategies that might inhibit or prevent restenosis, we previously used a chimeric toxin composed of transforming growth factor-at (which targets the epidermal growth factor receptor) and mutated Pseudomonas exotoxin to preferentially recognize and kill rapidly proliferating, versus quiescent, vascular SMCs. We have recently cloned and expressed a recombinant gene encoding Pseudomonas exotoxin with a mutated (nonfunctional) cell recognition domain fused with the ligand acidic fibroblast growth factor, termed aFGF-PE664GIUKDEL; thus, this recombinant toxin targets the fibroblast growth factor receptor. In the present study, we evaluated the relative effects of this chimeric toxin on quiescent versus rapidly proliferating vascular SMCs and also determined whether aFGFPE664G!UKDEL exerted different effects on SMCs versus endothelial cells. Rapidly proliferating SMCs (grown in 10% fetal bovine serum) were very sensitive to the cytotoxic effects of aFGF-PE664GIuKDEL, whereas cytotoxicity was significantly less when the SMCs were in a quiescent state (grown in medium supplemented with 0.5% fetal bovine serum). The chimeric toxin was also significantly less cytotoxic against endothelial cells. Competition studies using excess acidic fibroblast growth factor indicated that the cytotoxic effects are specifically mediated by the fibroblast growth factor receptor. Thus, the present studies suggest a potentially expanded role of recombinant toxin therapy in restenosis: multiple receptors can be targeted, and cytotoxic effects, at least in vitro, can be preferentially directed to rapidly proliferating vascular SMCs, with relative sparing of vascular endothelial cells. It will next be necessary to test this strategy for inhibiting restenosis in an in vivo model of vascular injury and SMC proliferation. (Circulation Research 1992;71:640-645)
منابع مشابه
The role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells
Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...
متن کاملThe roles of potassium channels in contractile response to urotensin-II in mercury chloride induced endothelial dysfunction in rat aorta
Urotensin-II (U-II), the most potent vasoconstrictor that has recently been recognized as a new candidate in cardiovascular dysfunction, might exert vasoconstriction through, at least partially, potassium channels that are predominant in both endothelial and vascular smooth muscle cells (VSMCs). The present study was designed to evaluate the roles of potassium channels in vascular responses to ...
متن کاملبررسی ارتباط اتصالات میواندوتلیال، میان سلول های اندوتلیال و نظم مارپیچی سلولهای عضلانی صاف جدار شرایین توزیع کننده (عضلانی)
Background and Purpose: Conventionally, the architecture of the artery wall is based upon the close-packed smooth muscle cells, endothelial and adventitial cells in both sides of internal elastic lamina (IEL). However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. Recent work raises fundamental questions about the cellular heterogeneity of arterie...
متن کاملبررسی تاثیر اسیدالائیدیک بر بیان ژن استئونکتین در سلولهای عضلهی صاف دیوارهی رگها
Background and Objective: Atheroma formation and progression of atherosclerosis are dependent on the expression of bone matrix proteins and regulatory factors such as osteonectin in the vessel walls. Studies have shown that consumption of Trans fatty acids increase risk of cardiovascular diseases. In this study, the effect of elaidic acid on osteonectin gene expression as one of the vascular ca...
متن کاملRapid Communication Insulin-Like Growth Factor I Gene Expression in Vascular Cells
Insulin-like growth factor I (IGF I), a potent growth factor in vitro, is present in blood and in multiple tissues and is a major mediator of the effects of growth hormone on postnatal growth. IGF I is internalized and retained largely intact in cultured vascular endothelial cells. Neovasculature transiently expresses IGF I immunoreactivity, but it is not known whether this represents internali...
متن کاملInsulin-like growth factor I gene expression in vascular cells.
Insulin-like growth factor I (IGF I), a potent growth factor in vitro, is present in blood and in multiple tissues and is a major mediator of the effects of growth hormone on postnatal growth. IGF I is internalized and retained largely intact in cultured vascular endothelial cells. Neovasculature transiently expresses IGF I immunoreactivity, but it is not known whether this represents internali...
متن کامل